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We present an analytical study of the dynamical local-field factors associated with the response of a homo-
geneous two-dimensional interacting electron liquid as functions of momentum, frequency, and density. We
derive sum rules that constrain their asymptotic for(ims momentum and frequengyor both the spin-
symmetric and spin-antisymmetric cases. Parametrized expressions for the local-field factors are proposed,
based on all available sum rules and on many-body perturbation theory, and these are found to be in good
agreement with quantum Monte Carlo calculations. Finally, these expressions are used to evaluate the effective
electron-electron interaction in a local approximation for two-dimensional systems. It is shown that both the
guantitative and qualitative behaviors of the interaction are sensitive to the inclusion of dynamical correlations.
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[. INTRODUCTION liest of such approximatiohs address the static case which
is then also implemented in the dynamical response func-
The theoretical study of interacting electron systems intions, resulting in a double approximation of the dynamical
two dimensions, where dynamical correlation effects ardocal-field factors, i.e.(q, @)~ Gapprof4) . However, in the
strong, continues as a formidable challenge. A useful apdynamical case, the exchange-correlation hole fluctuates in
proach to describing the many-body effects of exchange anfime and so the local-field factors must also exhibit fre-
correlation(xc) in the dynamic respondé(q,w) of interact-  quency dependenfemore so in two dimensions than in
ing electron liquids is via the use of local-field factofs three. It is the purpose of this paper to determine approxi-
G(q,w). For the proper spin-symmetri¢s) and spin-  mate forms of such dynamical local-field factors in homoge-
antisymmetriga) responses they may be defined through thg,oqus two-dimensional systems for aland (imaginary o

statements in a manner similar to the work of Richardson and Ashéroft
ﬁ( ) who reported results in three dimensions. Working with
1%3(q, ») otd, (1) imaginary frequencies not only simplifies the numerical

1+04Gs a(0,0) (0, ) work, circumventing the singularities along the real fre-
Here, vq:27re2/q is the Fourier-transformed two- quency axis, but is also a useful framework in which to carry

dimensional Coulomb potential and the overbar signifies th@Ut many subsequent calculations of the electron liquid.

fact that we must use the modified form of the Lindhard A number of exact results are known about the limiting
function? I1y(q,»), which uses thexactoccupation num- forms of the local-field factors, and the associated sum rules

bers, these giving rise to a further local-field factor defined®re thus useful in constraining approximate theories. For ex-

by* ample,G4(q—0,0=0) is given by the compressibility sum
rule and G4(q,w—) is given by the third-moment sum

ﬁo(q w)= 1lo(q, ) _ ) rule. On the other hand, the response functions, as given by

’ 1+v4Gn(q,0)1(g,w) second-order perturbation theory, have a singular structure at

4= 1 (units of 2kg), a region not accessible by known sum
rules. Thus, to determine the quantitative structureg-atl

we appeal to a summation of classes of infinite numbers of
diagrams within perturbation theory. Guided by both the sum

Alternatively, the response functions can be expressed
terms of the bare Lindhard function,

115%(q, 0) = _HO(q'w) ' (3) rules and perturbation theory, we derive relatively simple
14+04Gsa(d, @)y(q, w) parametrized forms of the local-field factors which we will
- : then show to agree rather well with the results from quantum
in which case we must have Monte Carlo(QMC) simulations, currently available only in
Es,a(qyw) =G;a(0,0)+Gu(q,w). 4) the static case. However, we find that the singular structure at

g=1 is less convincingly supported by the QMC data in the

Physically, the local-field factors represent the deviation ofspin-symmetric case, demonstrating that perturbation theory
the actual response functiofise., the full many-body prob- to second order may be insufficient to accurately describe the
lem) away from the random phase approximati®®A). De-  two-dimensional spin-symmetric response at intermediate
termination of these factors is a fundamental problem ofwvave vectors.

many-body theory, and as yet, it is necessary to resort to Knowledge of the charge and spin responses in an elec-
some form of approximation. The most widely used and eartron liquid is an essential input into determination of the
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effective interaction between any two electrons within the (3)

liquid. Kukkonen and OverhaugeikO) have derived an ex- N 5
pression for the effective electron-electron interaction in anIl,, = §— + q—>©
homogeneous electron liquid, in which all the xc effects of T

the medium of interacting electrons are treated in a local

approximation. This permits the effective interaction to be nm = q_.®

expressed in terms of the local-field factors that act to renor-~ ~¢*

malize the direct Coulomb potential. Both spin-symmetric

and spin-antisymmetric local-field factors are required to in- - ~

clude direct and exchange contributions in a consistent manlly = q——@ + 4 *Q;@
ner. We rewrite the KO expression, using the modified form

of the Lindhard function, to emphasize the need to include(b)
self-energy effects properly to determine the correct behavior ° = _ ______ 4 oomeee va

at largeq. The evaluation of the resulting modified KO ex- -

pression then requireSg, G,, andG,, as input.

The plan of this paper is as follows. In Sec. Il we derive FIG. 1. Leading-order contributions to the proper polarizability
the parametrized forms of the local-field factors by first car-function. (a) Diagrammatic representation of polarization bubbles
rying out a perturbative analysis via the diagrammatic routerising from self-energy, exchange, and fluctuatiofis. Dyson
and then later considering all the sum rule constraints. Iiduation for the screened potenti&PA).

Sec. Il we compute the effective electron-electron interac-

tion and in Sec. IV we end with some conclusions. By means of a variational appro~a%~lwe can implement the
following trial solution with A52(p,q)=A%2(q) represent-
Il. TWO-DIMENSIONAL LOCAL-FIELD FACTORS ing a local approximation, and we can also express the vertex

functions in terms of polarizability functions, thus
A. Perturbative calculations

The technigues we employ to solve the integral equations @)= ITy(q) ©
for the spin-symmetric and spin-antisymmetric vertex func- - ~\_ =~ _ T
tions are detailed in Ref. 4 and Ref. 8, and here we simply [To(q) —sdq) = eq) —TT5(q)
outline the main steps and introduce the notation. The integng
gral equations for the electron-electron vertex function that
include the lowest order effects of exchange and correlation
are given by[see Fig. 1 of Ref. § A3(Q)=

Io(q)
o(q) —Med @) —Mey(@)

where the leading-order contributions to the expansion of the

(10)

AS3(p,a)=1—Tr; [vgpa(P— P )+ T, p’;0)]

X Go(p' +0)Go(p")ASA(P’,q) polarizability function are shown in Fig. 1. The self-
consistent choice of diagrams is dictated by the requirement
—As'a(B,a)Tr;;,[GO(BJrE])GO(E’+E]) of gauge invariance or, equivalently, by the application of
_ 5 L Ward-Pitaevskii identitie thereby ensuring that conserva-
+Go(P)Go(P)vrpa(P —P) 1, (5)  tion laws are enforced in the electron dynanfitAs previ-

. . ously noted?*?13the polarizability diagrams in Fig. 1 can all
where the superscript denotes symmetgicor antisymmet- expressed in terms of the three-point functdd?(q,p);
ric, (@) p=(iwp,p), Try denotes the trace over all frequency thyg
and momenta, i.e.fdw,fd’p/(27)? G, is the non-

interacting Green'’s function, B 5 P P
o= =y _ - - . HS&p):TrE}URPA(Q) ﬁ(lwq)_ ﬁ(lwp)
I>(p,p";d) = Triv rea(K) v rea(K+ ) Go(k—p)
- - T, X[A®(p,qt)+A®(@,p)], (1D
X[Go(p'—K)+Go(k+p"+a)],  (6)
and finally ~ v (a) ~~ ~~
MeiP)=Trg =~ —IAD(B.G) + AC@Gp)
r*(p,p’;a)=0. (7) o == e~
—AY(=p,q) =A™ (q,—p)], (12)
All momenta are expressed in units d2and all energies in
units of 2/m, (=1). Note that the Coulombic interaction _ 1 _ o
in Eq. (5) is screened within the standard RPA, i.e., IIa(p) =~ 5TrgureA(@)URPA(P— Q)
vrea(@) =vg/[1=vgllo(q)]. 8) X[A®(@p-9)+A®(p-q % (13

115107-2



DYNAMICAL LOCAL-FIELD FACTORS AND EFFECTIVE.. ..

An explicit formula for the three-point function ®)(p,q) in
two dimensions has been given by Neumayr and Met/her.
To make connection with the local-field factors it is nec-

essary to isolate the first-order correction to the modified

Lindhard function,

TI§)(Q) =To(q) + Mol @) — T ), (14)
where
— ~_2m GO(E)[ERPA(E"‘E)_ERPA(T()]
II{q)=—ReTr -
49) k? € (iwg—q*—2k-q)?
(15
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wheree,(r) is the correlation energy per partidiexpressed
in units of Rydbergswhich can be extracted from Monte
Carlo simulationg® The combinatiom2(rg)+\2(rs) is de-
termined from the spin susceptibility,

2 rg Peé)
0 0 _c_ S c
)\a(rs)+)\n(rs)_77 21/2 (?52

(21)

where ¢ is the spin polarization. Another constraint is re-
quired to separately determimé]) and for this we appeal to

is the number-renormalized self-energy contribution to théhe perturbative calculations, where we find that

polarizability[cf. IT1.{q) that incorporates the free Fermi gas

occupation numbets Here 3 pa(k) is the electron self-
energy in the RPA.
The local-field factors are then given by

Gu(q)= ——— [T Q) + T (@) +T14(q)], (16
(9) quS(q)[ dq) +1Ie(q)+1Ig(q)], (16)
Ga<q>=m[nse<q>+nex<q>], 17
and
G(@) = —— [TI§(E) — TTo(d) . (18)
" Uqu(Q) °

The results of the numerical calculations have been partiall
reported elsewhefé® and it has been noted that for the two-
dimensional electron liquid the inclusion of fluctuation dia-

grams provides significant enhancement to the proper pola

izability function.

A shortcoming of the perturbative method is that, in ad-

dition to the increasing inaccuracy at higher, the calcu-
lated local-field factors diverge at largepand thus do not
obey the known largeq sum rules that predict finite
asymptotic values. In the following section we discuss th

sum-rule constraints that will then later be used, in conjunc-

tion with the numerical results from Egd.6)—(18) at low q,

to determine simple parametrized expressions for the local-

field factors.

B. Constraints

In the static limit,w=0, all local-field factors are linear
in g in the limit of smallq, i.e.,

imGi(q,00=\2(rg)q (i=s,a,n).
q—0

19

The combination\2(rg)+A2(rs) is determined from the
compressibility sum rule,

e

Aa(rd) g
)\g(rs) 10+5rg

(22)

provides a reasonable approximation for the ratio of the gra-
dients of the respective local-field factorscpt O for 1=<rg
=<10. Note that, other than the fact that we chose to match
the Richardson-Ashcrdftformalism as much as possible,
there is noa priori reason why the fitting formula E¢22)
should take the proposed form. However, some justification
for retaining this form is provideéx post factdy the good
agreement with QMC data, as will be demonstrated in the
following section.

In the determination of the dynamic local-field factors it
has been overlooked in some previous work that at very long
wavelengths the loww limit does not correspond to the static
limit as given abové/ i.e., lim, _olimg_o#limg_olim,, .
Mathematically this behavior stems from the singular value
of the vertex functiom\ (q, ) at the origin. A more physical
%xplanation can be seen in the work of Conti and VigHale
who derived lim,_olimg_0G(q,iw) =Eg/(2v4)[ (F2—3F;
+4F,)/ (F,+2)] whereF, are the Landau parameters. From
the available QMC calculatiof$of the Landau parameters
we find that this expression differs from E@.9) by 3% at
rs=1 and 4% at =5, and hence, for the sake of simplicity,
we choose not to take this minor difference into account.

We turn our attention to further constraints Gg andG, .
he largew limit of G5 and G, is determined by the third-
é%2Lwhich in the lowq limit is given by

T
moment sum rul

lim lim G4(q,iw)=Ag(rgq, (23
q4>0w~>oc
and by
lim lim G,(q,iw)=\;(rs)/q. (24
q—0w—x
Here
7 19 de(ry)
0 _ = o v 2 C S
)\s(rs)_ 37T+ 25/2rsec(rs)+ 27/2rS ars ’ (25)

and
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Ai(rs)=2f:dkk2[~3(k)—S(k)], (26)

whereS(k) is the antisymmetric structure factor as(k) is
the symmetric structure factéSec. Il Q. The largew limit

of G, follows from an appropriate expansion of the expres-

sion for the modified Lindhard function, namely,

- . . 3md
lim I1o(q,iw)= lim IIy(q,iw) + W«EKE)_“EKE)O),

w—®© w— 0

27
giving®
lim lim Gn(qviw)z)\:f(rs)q: (28)
q—0w—
where
" 3rg 9
)\n(rS):zT/Z Or,_rs[rsec(rs)]- (29

In the last line we have applied the generalized virial

theoren? The largeq limits of G5 and G, turn out to be
frequency-independeritn contrast to the equivalent three-
dimensional resulisand have been evaluated to*be

lim G4(q,iw)=1—9(0)

q—o

(30

and

lim G,(q,iw)=g(0), (3D

qﬂoo

whereg(0) is the electron pair correlation function evaluated

at the origin. In addition, a largg expansion of the modified
Lindhard integral gives the asymptotic behavior Gf,,
namely,

o0

r d A
4 ?"q. (32)

q“len(Qyi w)=— ZT/Z E[rsfc(rs)]: -

At intermediate wave vectors there are extrem&;jn in the
static case ¢ =0) the peaks occur at=1 arising from the
singular nature of the response at this valug.aiVe find that
the perturbative results, at log and highrg, are well ap-
proximated by taking
Gi(a=1,0~&\{(ry)

(i=s,a,n), (33

where {;=1.4, {,=0.9, and{,=1.0. Since the numerical
local-field factors are nonlinear in the regior<@<1, Eg.
(33) notably underestimates the peak heights ngarl.
However, the error in the combined local-field factors &qj.
is reduced somewhat by the opposing sign&gfand G ,
in this region. The comments made just after E2p) also
apply here for retaining the form of E¢33).

In the largew limit the peaks occur ab=q?, as can be

seen by differentiation of the the expression of the local field

factors in this limit>>?*i.e.,

PHYSICAL REVIEW B67, 115107 (2003

1

(9-9) %
(0, 0) ———-
q'vq

im Gg 4(0,iw)=

I
w— 0

S

2N

’

_775,a(0'a0',) 2
quvg

[q~(q+q’)]2vq+q11

X[So',cr’(q’)_ 60’0”]!
wherenps(o,0')=1, n.(o,0')=sgn(oc’), and

(39

_(io+g?)*+(io—g")*
C 2(e’+gh?

a(g,w) (35
These peak values are found to be identical to those given in
Eqg. (30) and Eq.(31). From Eq.(27) it is possible to show
thatG,(q,i w) has a minimum atj?= w/ /7 = 0.38» with the
peak height given by

) d
Gi(0=min.| @) =1.3040 7 o [15ec(r9)],  (36)
S
again, in the largev limit.

C. Parametrization

To obtain expressions for the parametrized forms of the
local-field factors, we must specify, in addition to the above
constraints, where the extrema lie as functions ofgadind
. We interpolate between the location of the extrema at the
static regime and the high-frequency regime as follows: the
maxima ofG¢ and G, are taken to be located gf=1+ o
and the minima ofG, is taken to be located ay’=1
+0.38w.

1. Gy(q,iw)

Guided by the sum rules, we parametrize the dynamical
spin-symmetric local field factor as a rational fraction, poly-
nomial in g and with o-dependent coefficients,

. ay(w)q+by(w)q’
Gq(0,iw)= , 3
A w)a dgo)d 47
where the coefficients are constrained to be
- A+ W\ -
as(w)——l+w2 , (39
bs(w)=ds(w)[1—g(0)], (39
_ as(w) _ 7 _ as(w)
OTT50) b1 w2 6by(w)(1+ )™’
(40)
and
{s Agw
dy(w)= N NG
6[{s—1+9(0)](1+w”) [1-9(0)](1+0")
(41)
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The polynomials are simply chosen to be of the lowest orwhere

ders such that not only are sum rules satisfied but also that

root solutions in the denominator are obviated. The expres-

sion forcg(w) follows from the condition that the maxima be Naw?

located at®=1+ w. aa(w)= 1102 (43
2. G,(q,iw)
In a similar way, the spin-antisymmetric local-field factor )\2
is parametrized as ba(w)= v a2 (44)
a “1+b +c !
Ga(Qiw)= alw)q a(®)q agw)q ’ 42)
1+d(w)gt+e(w)q Ca(@)=€,(w)g(0), (45)
|
d() a,(0)[8ex(w) (14 w) P+ 1]+ by(w)[6e,(0)(1+ )%= 1+ w]— Tca (W) (1+ w)* 5
w)= ’
: 6Ca(@)(1+ w) ¥~ 2a,(w)(1+ )2
|
and Ao+ w2\
., an(w)= ——", (49)
)\aw ga 1+(,()
ex(w)= —+ . (@7
9(0)(1+ ") 6[{a—9(0)](1+w") Andn(@)
by(w) =~ "5, (50
3. Gn(g,iw)
Finally, the local-field factor associated with number a,(w) 15a,(w)+ 7N,

isa i ion i i Cn(@) = -
renormalisation of the Lindhard function is parametrized as ©Cn INZd(@)(1+0.380)72  B6XZ(1+0.380) 2

. an(w)q+by(w)q’ dn(w)
G, (0,iw)= , 48 __n 5/2
n(d,iw) T+ c(@)atd (@) (48) g (1+0.380)%2 (52)
where and
9/2
dn(@) = i” + . n® . (52)
(54020 (1+ 0% [5y,0Y2+ 207 (1+0.389Y2](1+0.380)3(1+ 0?)
|
Here v, is determined by the peak height at largei.e., 05
g(0)= > (54)
1+1.372 -+ 0.08302
d
¥n=1.304 sd_rs[rsec(rs)]- (53)  that interpolates between the results of analytical studies at

high densities and near Wigner crystallization. In addition,
the spin susceptibility sum rule E¢R1) can approximated
These expressions for the local field factors, though cumbeiy the following parametrization, namely,
some, are straightforward to evaluate and they require input
of various quantities that we can readily obtain from QMC 5
and other studies of the homogeneous two-dimensional elec- Ao(ro)+A8(rg)= )
tron gas. The correlation energy can be obtained from the 7+ 1.4954 + 0.3193;’2
diffusion Monte Carlo simulations of Rapisarda and
Senatoré® For the pair correlation function we use the re- which is based on an extrapolation of available QMC d4ta.
cently proposed expression Finally, the structure factors appearing in Eg6) can be

(59
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TABLE |. Evaluation ofrs-dependent parameters as used in parametrized local-field factor expressions,
Eq. (37), Eq. (42), and Eq.(48). Note that most of these values depend on the QMC calculations of the
correlation energy and structure factors as reported in Ref. 16 and Ref. 27, respectively.

As

\a

rs 9(0) \G \a Ao A n

1 0.2037 0.6907 0.3889 0.4324 0.2640 —0.0288 —0.3011 —0.1851
2 0.1227 0.7284 0.3889 0.3375 0.3301 —0.0338 —0.3622 —0.2227
5 0.0503 0.7998 0.4570 0.2059 0.4008 —0.0294 —0.3659 —0.2249
10 0.0217 0.8632 0.5424 0.1256 0.2271 —0.0209 —0.3211 —0.1968

obtained from the Fourier transforms of the two-dimensionaks given by Eq(26). We report our results, along with all the

spin-resolved pair correlation functions,

~ n .
S(k)—1= EJ d?r[g;,(r)—g; (r)]exp(—ik-r), (56)

and

n

S(k)—1= Zf dzr[g”(r)+gu(r)—2]exp(—ik-r).
(57)

We obtain values ofj(r) at various values of ; from very
recent QMC studié€s thereby enabling us to evaluaté(r )

(a)

otherr -dependent parameters, in Table |.

The static local-field factors at;=1, as calculated by

both the parametrized forms and by perturbation theory, are
plotted in Fig. 2. The differences at largghighlight the
failure of perturbation theory to satisfy the largesum rules.
A comparison of the static and dynamic local-field factors is
shown in Fig. 3 at;=5, and we collate some data in Table
Il for referential purposes in any future implementation of
our parametrized scheme.

The static combinations of local-field factors Eg) are
shown in Fig. 4 and Fig. 5 and are compared with available
data from QMC studié€ atr values of 1, 2, 5, and 10. The
generally favorable comparison demonstrates that the pro-
posed parametrized expressions do capture most of the es-
sential aspects of electron correlation to a very good degree,
especially in the spin-antisymmetric case up to valueg of
=1 (i.e., Zkg). At higher values ofg the parametrized ex-
pressions are strongly dependentgi®) and the deviation
of the Monte Carlo data at this regime suggests that the fit-
ting formula forg(0) proposed in Ref. 28 as given by Eq.
(54), overestimates the results of QMC simulations for most
densities in the regime<ir <10. This conclusion concern-
ing Eq. (54) has also very recently been pointed out in the
work of Bulutay and Tanat&r In general, it can be gleaned
from the figures that the perturbation scheme employed in
Sec. Il A, which determines the structure at logwis quite
accurate for the spin-antisymmetric cd§ég. 5 but less so
for the spin-symmetric caséig. 4). The structure predicted
by the perturbative calculations, in particular the maxima at
g=1, appears to be somewhat washed out in the spin-
symmetric QMC results for lowg or is shifted to higher

TABLE Il. Calculated values of the parametrized local-field fac-

tors atrg=5.
® q Gs(q,iw) Ga(0,iw) Gn(a,iw)
0 0.5 0.522 0.106 —0.016
0 1.0 1.120 0.185 —0.029
0 15 0.997 0.105 0.023
0.5 0.5 0.414 0.082 —0.030
02 55 53 55 i 15 s G 2 0.5 1.0 0.939 0.500 —0.066
q (units of k) 0.5 15 0.970 0.049 —0.001
1.0 0.5 0.349 0.151 —0.093
FIG. 2. Static local-field factors at;=1. (a) Evaluation from 1.0 1.0 0.854 0.056 —0.165
perturbation theory, Eq916)—(18). (b) Evaluation from param- 1.0 15 0.967 0.050 —0.132

etrized expressions, E(37), Eg. (42), and Eq.(48).
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FIG. 3. Parametrized local-field factors from E§7), Eq. (42),
and Eq.(48) atrg=5. (a) Static (w=0). (b) Dynamic (@=1).
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values ofq as in the case ofs=10. This suggests that, at
least in two dimensions, the higher-order diagrams excluded
from Fig. 1 may play a significant role in calculations of the
charge-density response, but are not important to calculations
for the spin-density response because of mutual cancellations
amongst the diagrams. We speculate on the nature of these
cancellations in Sec. IV.

There exists, at present, no corresponding dynamical
QMC studies of electrons in two dimensions and thus the
efficacy of the parametrized local field factors at finite fre-
quencies remains to be tested directly.

Ill. EFFECTIVE ELECTRON-ELECTRON INTERACTIONS

With the many-body effects encaptured by the local-field
factors it is now possible to determine the effective interac-
tion between two electrons in a fully interacting sea of elec-
trons that rearrange themselves because of screening, ex-
change, and other correlation effects. We use the expression
for the effective electron-electron interaction as proposed by
KO, namely,

v, [vqes(“dﬂzr}(a)
(@) 1+0,G(q)To(q)

Voo =A%(@)

[vaGa()M1o(q)
ag

————, (58)
1+vqGa(a)o(q)

q (units of ZkF)

q (units of 2k1=)

FIG. 4. Spin-symmetric local-field factors. The continuous lines are evaluated from the parametrized expressi@8isafdEq.(49),

and the individual data points are from QMC calculatigRef. 27).
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0.5

0.4

0.3

G,(@

0.2

q (units of 2k ) q (units of 2k )

FIG. 5. Spin-antisymmetric local-field factors. The continuous lines are evaluated from the parametrized expressiéRsaid|.Eq.
(48), and the individual data points are from QMC calculatigRef. 27).

whereA (q) is the vertex function, which have no further adjustable constants, have been shown
to compare well with(statig QMC simulations, particularly
3 1 in the spin-antisymmetric case. Finally, the effective two-
A(q)= —, (59 dimensional electron-electron interaction has been evaluated
1+vqGs(q)1o(q) using the parametrized local-field factors within the KO local
o are the Pauli spin matrices, andq) is the dielectric approximation.

The agreement of the spin-antisymmetric local-field factor
with the QMC results, at intermediate wave vectors, is par-
~ — o~ o~ ticularly notable given that perturbation theory, and not exact

€(q)=1—vgllo(q)A(q). (60 sum rules, has been used to determine the peak heights at
The KO expression neglects the contribution of transversgzl' This, fortuitously, suggests that higher-order diagrams
spin fluctuation® and thus represents a strictly local ap- are '.““t“a“.y cancelled to a large degree even though. the
proximation. The static effective electron-electron interr;mction'mj'V'duaI diagrams may themselves have large contribu-
using the parametrized local-field factors is shown in Fig. 6
for triplet pairing. As previously showhthe singular nature S
atg=1 (i.e., Zkg) is more pronounced in two dimensions I
than in threé and is also reflected in aattractiveinteraction
for triplet pairing at lower densities. Approximations that ne-
glect the peaked structure @&=1 do not give rise to attrac- «
tive regions of the interelectron potential.

The frequency-dependent effective electron-electron inter-
action is shown in Fig. 7 at various valuesrqf. The non-
monotonic deviation from the static approximatian= 0) is
quite evident and, as expected, the non-negligible frequenc
dependence increases with correlation, r.g.,

function,

e
)

y
S:’F
e
=

T

/2k)
(units of 2%
T

o

1=

S
T

Vo™

=)
L

Veff (q) (units of e

IV. DISCUSSION AND CONCLUSIONS

0 I 05 I 1 I 1.5 I 2 I 25
In summary, we have determined parametrized expres q (units of 2k;)
sions for the two-dimensional dynamical local-field factors
based on all available sum rules and diagrammatic summa- FIG. 6. Static effective electron-electron potentiat gt 5. The

tion of classes of diagrams. The parametrized expression@set shows the real-space behavior.
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13 — T , ' L — whilst the retarded nature of the dynamics can be neglected,
- 1 i.e., through use of the adiabatic approximation. In two di-
T T T T mensions correlation effects on thg dependence are

"""""""" greater?* as demonstrated by the singular peak in the po-

_ larizability at g=1. In addition, the gapless nature of the

A g T | two-dimensional plasmon requires that the characteristic
S e charge-density response time goes to infinity in the long

P =1 wavelength limit, and hence the adiabatic approximation

B R Ts= | (i.e., neglect ofw dependenceis expected to be even less

N s satisfactory in two dimensions than in thifdn summary,

| the case of two dimensions is interestingly different from

that of three dimensions in that the, () dependences of

correlation effects are enhanced for a given Hence, it

5
i
T

——
-
—

IS
T

\
\

&
T
\
1

. 2
V4 (©®) (units ofe /2kF)
T
g

10.5— —

L would be useful to carry out a similar calculation of the

3
@ (units of 4Ep) correlation energy to explicitly verify the increasing impor-
tance of dynamical correlation in two dimensions.

FIG. 7. Dyngmical_effegtive electron-electron interactiongat It is worth emphasizing that the results reported here ap-
=0.5 as a function of imaginary frequency. ply strictly to a single-band system. Multiband systems, in
particular compensated electron-hole systems, permit the
possibility of correlated charge fluctuations between the
bands. Previous wofR on three-dimensional systems has
demonstrated that the two-band case has a strikingly differ-
ent effect on the effective electron-electron interaction,

L L |
0 1 2

tions. There are two possible reasons for this cancellatipn:
summation of terms alternating in spisign and (ii) self-
consistent cancellation of self-energy and vertex correction
attributable to gauge invariandee., Ward identities Ex-

plicit evaluation of higher-order diagrams will be needed to o . . .
assess these conjectures. where an additionahttractive term arises precisely from

However, the case of the spin-symmetric local-field factorthese charge fluctuations. This reflects an enhancement of the

is less satisfactory aj=1, probably because of the lack of underlying local-field effects which we expect to occur also,

cancellation between spin-up and spin-down contributions!| "t 0 @ greater extent, in compensated two-dimensional

The singular peaks at=1 found in perturbation theory do eIeI(::f[rorl}-hole systtert?]s.t ntriaui licati f the d
not appear convincingly in the QMC data: it is either washed I_naly,l well}o I?j fa tan n ngwngjhapp#:a ;9” 0 | et Y
out or, surprisingly, shifted to higher wave vectors. With only namical- local-fie actors 1s 1n the eliective —electron-
one set of such data available we have to await further, ana'eCUO” interaction where correlation effects may be giving

more accurate, QMC calculations, which are currently bein Ise _to regions of att_ract_ion, aﬂ_d_ thus p_os_sibly mediat_ing in-
carried o’ before we can make any definitive conclusions, 1INSIC superconducting instabilitié8 Preliminary numerical

The g and w dependences of the local-field factors are aSOI%gor.‘s of the Eliashberg gap equation have been cgmed
indicating that electronic dynamical correlation

reflection of the spatial and temporal nonlocality of the xcOUb oo L .
kernel K,(r,t;r',t’) in time-dependent density-functional raises the intrinsic pairing transition temperature as the

theory. Leinet al®! have investigated the importance of suchdimensionality of the isotropic electron liquid is lowered
dependences from various approximate forms of three!'OM three to two.
dimensional local-field factors and concluded that, in deter-
mining the correlation energy, the momentum dependence
cannot be neglected, while the frequency dependence, We are grateful to Dr. Saverio Moroni for sharing his
though significant, is less important. Physically, this impliesresults of QMC calculations, of which only some have been
that, at least for correlation energy calculational purposes, ipublished earliet® This work was supported by the NSF

is necessary to acknowledge the spatial extent of xc holaynder Grant No. DMR-9988576.
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